skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Delmore, Kira_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The application of high‐throughput sequencing to phylogenetic analyses is allowing authors to reconstruct the true evolutionary history of species. This work can illuminate specific mechanisms underlying divergence when combined with analyses of gene flow, recombination and selection. We conducted a phylogenomic analysis ofCatharus, a songbird genus with considerable potential for gene flow, variation in migratory behaviour and genomic resources. We documented discordance among trees constructed for mitochondrial, autosomal and sex (Z) chromosome partitions. Two trees were recovered on the Z. Both trees differed from the autosomes, one matched the mitochondria, and the other was unique to the Z. Gene flow with one species likely generated much of this discordance; substantial admixture betweenustulatusand the remaining species was documented and linked to at least two historic events. The tree unique to the Z likely reflects the true history ofCatharus; local genomic analyses recovered the same tree in autosomal regions with reduced admixture and recombination. Genes previously connected to migration were enriched in these regions suggesting transitions between migratory and non‐migratory states helped generate divergence. Migratory (vs. nonmigratory)Catharusformed a monophyletic clade in a subset of genomic regions. Gene flow was elevated in some of these regions suggesting adaptive introgression may have occurred, but the dominant pattern was of balancing selection maintaining ancestral polymorphisms important for olfaction and perhaps, by extension, adaptation to temperate climates. This work illuminates the evolutionary history of an important model in speciation and demonstrates how differential resistance to gene flow can affect local genomic patterns. 
    more » « less
  2. Abstract Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile‐specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation. 
    more » « less